from google.colab import drive
drive.mount('/content/drive/' ,force_remount=True)
Mounted at /content/drive/
import pandas as pd
df = pd.read_csv('/content/drive/MyDrive/Retail_Data_Transactions.csv')
df
customer_id | trans_date | tran_amount | |
---|---|---|---|
0 | CS5295 | 11-Feb-13 | 35 |
1 | CS4768 | 15-Mar-15 | 39 |
2 | CS2122 | 26-Feb-13 | 52 |
3 | CS1217 | 16-Nov-11 | 99 |
4 | CS1850 | 20-Nov-13 | 78 |
... | ... | ... | ... |
124995 | CS8433 | 26-Jun-11 | 64 |
124996 | CS7232 | 19-Aug-14 | 38 |
124997 | CS8731 | 28-Nov-14 | 42 |
124998 | CS8133 | 14-Dec-13 | 13 |
124999 | CS7996 | 13-Dec-14 | 36 |
125000 rows × 3 columns
import pandas as pd
df = pd.read_csv('/content/drive/MyDrive/Child_Smokers.csv')
df
Age (years) | Height (cm) | FEV (litres) | Sex | Smoker | |
---|---|---|---|---|---|
0 | 9 | 145 | 1.708 | female | non |
1 | 8 | 171 | 1.724 | female | non |
2 | 7 | 138 | 1.720 | female | non |
3 | 9 | 135 | 1.558 | male | non |
4 | 9 | 145 | 1.895 | male | non |
... | ... | ... | ... | ... | ... |
649 | 15 | 152 | 2.278 | female | smoker |
650 | 16 | 183 | 4.872 | male | smoker |
651 | 16 | 170 | 4.270 | male | smoker |
652 | 15 | 173 | 3.727 | male | smoker |
653 | 16 | 160 | 2.795 | female | smoker |
654 rows × 5 columns
abc = df[['Age (years)', 'Height (cm)']]
abc
Age (years) | Height (cm) | |
---|---|---|
0 | 9 | 145 |
1 | 8 | 171 |
2 | 7 | 138 |
3 | 9 | 135 |
4 | 9 | 145 |
... | ... | ... |
649 | 15 | 152 |
650 | 16 | 183 |
651 | 16 | 170 |
652 | 15 | 173 |
653 | 16 | 160 |
654 rows × 2 columns
df = pd.read_csv('/content/drive/MyDrive/Electric_Production.csv')
df
DATE | IPG2211A2N | |
---|---|---|
0 | 1/1/1985 | 72.5052 |
1 | 2/1/1985 | 70.6720 |
2 | 3/1/1985 | 62.4502 |
3 | 4/1/1985 | 57.4714 |
4 | 5/1/1985 | 55.3151 |
... | ... | ... |
392 | 9/1/2017 | 98.6154 |
393 | 10/1/2017 | 93.6137 |
394 | 11/1/2017 | 97.3359 |
395 | 12/1/2017 | 114.7212 |
396 | 1/1/2018 | 129.4048 |
397 rows × 2 columns
from matplotlib import pyplot as plt
import seaborn as sns
date_column = 'DATE'
value_column = 'IPG2211A2N'
fig, ax = plt.subplots(figsize=(10, 5.2), layout='constrained')
sns.lineplot(x=date_column, y=value_column, data=df, palette='Dark2')
plt.xlabel(date_column)
plt.ylabel(value_column)
plt.title('Time Series Plot of ' + value_column)
sns.despine(fig=fig, ax=ax)
plt.show()
<ipython-input-37-664341d67888>:8: UserWarning: Ignoring `palette` because no `hue` variable has been assigned. sns.lineplot(x=date_column, y=value_column, data=df, palette='Dark2')
print(df[['DATE']])
type(df[['DATE']])
DATE 0 1/1/1985 1 2/1/1985 2 3/1/1985 3 4/1/1985 4 5/1/1985 .. ... 392 9/1/2017 393 10/1/2017 394 11/1/2017 395 12/1/2017 396 1/1/2018 [397 rows x 1 columns]
pandas.core.frame.DataFrame
df = pd.read_csv('/content/drive/MyDrive/InputFileEdges.csv')
df
from | to | weight | type | |
---|---|---|---|---|
0 | s01 | s02 | 10 | hyperlink |
1 | s01 | s02 | 12 | hyperlink |
2 | s01 | s03 | 22 | hyperlink |
3 | s01 | s04 | 21 | hyperlink |
4 | s04 | s11 | 22 | mention |
5 | s05 | s15 | 21 | mention |
6 | s06 | s17 | 21 | mention |
7 | s08 | s09 | 11 | mention |
8 | s08 | s09 | 12 | mention |
9 | s03 | s04 | 22 | hyperlink |
10 | s04 | s03 | 23 | hyperlink |
11 | s01 | s15 | 20 | mention |
12 | s15 | s01 | 11 | hyperlink |
13 | s15 | s01 | 11 | hyperlink |
14 | s16 | s17 | 21 | mention |
15 | s16 | s06 | 23 | hyperlink |
16 | s06 | s16 | 21 | hyperlink |
17 | s09 | s10 | 21 | mention |
18 | s08 | s07 | 21 | mention |
19 | s07 | s08 | 22 | mention |
20 | s07 | s10 | 21 | hyperlink |
21 | s05 | s02 | 21 | hyperlink |
22 | s02 | s03 | 21 | hyperlink |
23 | s02 | s01 | 23 | hyperlink |
24 | s03 | s01 | 21 | hyperlink |
25 | s12 | s13 | 22 | hyperlink |
26 | s12 | s14 | 22 | mention |
27 | s14 | s13 | 21 | mention |
28 | s13 | s12 | 21 | hyperlink |
29 | s05 | s09 | 2 | hyperlink |
30 | s02 | s10 | 5 | hyperlink |
31 | s03 | s12 | 1 | hyperlink |
32 | s04 | s06 | 1 | mention |
33 | s10 | s03 | 2 | hyperlink |
34 | s03 | s10 | 2 | mention |
35 | s04 | s12 | 3 | hyperlink |
36 | s13 | s17 | 1 | mention |
37 | s14 | s11 | 1 | mention |
38 | s03 | s11 | 1 | hyperlink |
39 | s12 | s06 | 2 | mention |
40 | s04 | s17 | 2 | mention |
41 | s17 | s04 | 4 | hyperlink |
42 | s08 | s03 | 2 | hyperlink |
43 | s03 | s08 | 4 | hyperlink |
44 | s07 | s14 | 4 | mention |
45 | s15 | s06 | 4 | hyperlink |
46 | s15 | s04 | 1 | hyperlink |
47 | s05 | s01 | 1 | mention |
48 | s02 | s09 | 1 | hyperlink |
49 | s03 | s05 | 1 | hyperlink |
50 | s07 | s03 | 1 | mention |
r_hyper = df.loc[df['type'] == 'hyperlink']
r_hyper
from | to | weight | type | |
---|---|---|---|---|
0 | s01 | s02 | 10 | hyperlink |
1 | s01 | s02 | 12 | hyperlink |
2 | s01 | s03 | 22 | hyperlink |
3 | s01 | s04 | 21 | hyperlink |
9 | s03 | s04 | 22 | hyperlink |
10 | s04 | s03 | 23 | hyperlink |
12 | s15 | s01 | 11 | hyperlink |
13 | s15 | s01 | 11 | hyperlink |
15 | s16 | s06 | 23 | hyperlink |
16 | s06 | s16 | 21 | hyperlink |
20 | s07 | s10 | 21 | hyperlink |
21 | s05 | s02 | 21 | hyperlink |
22 | s02 | s03 | 21 | hyperlink |
23 | s02 | s01 | 23 | hyperlink |
24 | s03 | s01 | 21 | hyperlink |
25 | s12 | s13 | 22 | hyperlink |
28 | s13 | s12 | 21 | hyperlink |
29 | s05 | s09 | 2 | hyperlink |
30 | s02 | s10 | 5 | hyperlink |
31 | s03 | s12 | 1 | hyperlink |
33 | s10 | s03 | 2 | hyperlink |
35 | s04 | s12 | 3 | hyperlink |
38 | s03 | s11 | 1 | hyperlink |
41 | s17 | s04 | 4 | hyperlink |
42 | s08 | s03 | 2 | hyperlink |
43 | s03 | s08 | 4 | hyperlink |
45 | s15 | s06 | 4 | hyperlink |
46 | s15 | s04 | 1 | hyperlink |
48 | s02 | s09 | 1 | hyperlink |
49 | s03 | s05 | 1 | hyperlink |
from google.colab import drive
drive.mount('/content/drive/' ,force_remount=True)
Mounted at /content/drive/
df = pd.read_csv('/content/drive/MyDrive/FUBESBFWFW.csv')
df
Region | Urban Population (%) in 2020 | Urban Population (%) in 2100 (projected) | Change (2020 - 2100) | |
---|---|---|---|---|
0 | World | 56.50% | 68.50% | +12.0% |
1 | Eastern Africa | 43.10% | 74.30% | +31.2% |
2 | Central and Southern Asia | 34.50% | 64.50% | +30.0% |
3 | Eastern Asia | 69.10% | 80.30% | +11.2% |
4 | Northern Africa and Western Asia | 74.10% | 82.50% | +8.4% |
5 | Latin America and the Caribbean | 81.50% | 88.20% | +6.7% |
6 | Northern America | 82.50% | 85.40% | +2.9% |
7 | Oceania | 73.90% | 82.20% | +8.3% |
8 | Europe | 74.40% | 80.20% | +5.8% |
import requests
import pandas as pd
url = "https://min-api.cryptocompare.com/data/histoday?fsym=BTC&tsym=ETH&limit=30&aggregate=1&e=CCCAGG" ###nested table
resp = requests.get(url)
data = resp.json()['Data']
TabWOData = resp.json()
del TabWOData['Data']
TabWOData
{'Response': 'Success', 'Type': 100, 'Aggregated': False, 'TimeTo': 1707004800, 'TimeFrom': 1704412800, 'FirstValueInArray': True, 'ConversionType': {'type': 'invert', 'conversionSymbol': ''}, 'RateLimit': {}, 'HasWarning': False}
df = pd.DataFrame(data)
df
time | high | low | open | volumefrom | volumeto | close | conversionType | conversionSymbol | |
---|---|---|---|---|---|---|---|---|---|
0 | 1704412800 | 19.62 | 19.28 | 19.47 | 6378.10 | 124246.51 | 19.46 | invert | |
1 | 1704499200 | 19.63 | 19.45 | 19.46 | 2566.18 | 50144.04 | 19.62 | invert | |
2 | 1704585600 | 19.82 | 19.54 | 19.62 | 3066.93 | 60420.49 | 19.77 | invert | |
3 | 1704672000 | 20.18 | 19.71 | 19.77 | 9824.44 | 195508.16 | 20.14 | invert | |
4 | 1704758400 | 20.86 | 19.27 | 20.14 | 13542.65 | 274160.47 | 19.67 | invert | |
5 | 1704844800 | 19.67 | 17.98 | 19.67 | 27096.81 | 508199.96 | 18.06 | invert | |
6 | 1704931200 | 18.40 | 17.65 | 18.06 | 18234.48 | 326585.22 | 17.70 | invert | |
7 | 1705017600 | 17.81 | 16.35 | 17.70 | 21526.49 | 367206.38 | 16.97 | invert | |
8 | 1705104000 | 17.04 | 16.57 | 16.97 | 9175.30 | 154040.63 | 16.62 | invert | |
9 | 1705190400 | 17.09 | 16.61 | 16.62 | 5721.08 | 96473.67 | 16.88 | invert | |
10 | 1705276800 | 17.02 | 16.75 | 16.88 | 5745.29 | 97049.69 | 16.93 | invert | |
11 | 1705363200 | 17.02 | 16.62 | 16.93 | 6248.24 | 105173.29 | 16.67 | invert | |
12 | 1705449600 | 16.93 | 16.63 | 16.67 | 5385.49 | 90189.59 | 16.90 | invert | |
13 | 1705536000 | 16.95 | 16.66 | 16.90 | 6031.27 | 101540.35 | 16.73 | invert | |
14 | 1705622400 | 16.87 | 16.52 | 16.73 | 6849.00 | 114288.86 | 16.72 | invert | |
15 | 1705708800 | 16.93 | 16.71 | 16.72 | 2266.45 | 38136.45 | 16.87 | invert | |
16 | 1705795200 | 16.94 | 16.82 | 16.87 | 1548.69 | 26125.34 | 16.93 | invert | |
17 | 1705881600 | 17.23 | 16.87 | 16.93 | 7899.95 | 134856.31 | 17.10 | invert | |
18 | 1705968000 | 17.94 | 17.04 | 17.10 | 8914.91 | 156284.65 | 17.79 | invert | |
19 | 1706054400 | 18.02 | 17.79 | 17.79 | 4401.59 | 78841.48 | 17.94 | invert | |
20 | 1706140800 | 18.22 | 17.87 | 17.94 | 4744.42 | 85597.45 | 18.01 | invert | |
21 | 1706227200 | 18.67 | 17.93 | 18.01 | 6196.83 | 113551.18 | 18.44 | invert | |
22 | 1706313600 | 18.62 | 18.31 | 18.44 | 2069.10 | 38156.40 | 18.57 | invert | |
23 | 1706400000 | 18.67 | 18.45 | 18.57 | 2623.36 | 48690.03 | 18.62 | invert | |
24 | 1706486400 | 18.85 | 18.57 | 18.62 | 3818.25 | 71342.40 | 18.68 | invert | |
25 | 1706572800 | 18.84 | 18.22 | 18.68 | 5774.91 | 107022.72 | 18.33 | invert | |
26 | 1706659200 | 18.69 | 18.32 | 18.33 | 4589.09 | 85047.65 | 18.65 | invert | |
27 | 1706745600 | 18.76 | 18.47 | 18.65 | 3777.89 | 70354.20 | 18.70 | invert | |
28 | 1706832000 | 18.76 | 18.58 | 18.70 | 2941.62 | 54930.31 | 18.71 | invert | |
29 | 1706918400 | 18.75 | 18.57 | 18.71 | 1632.05 | 30447.72 | 18.72 | invert | |
30 | 1707004800 | 18.76 | 18.60 | 18.72 | 1429.95 | 26702.86 | 18.74 | invert |
df2 = pd.DataFrame(TabWOData)
df2
Response | Type | Aggregated | TimeTo | TimeFrom | FirstValueInArray | ConversionType | RateLimit | HasWarning | |
---|---|---|---|---|---|---|---|---|---|
type | Success | 100 | False | 1707004800 | 1704412800 | True | invert | NaN | False |
conversionSymbol | Success | 100 | False | 1707004800 | 1704412800 | True | NaN | False |
!pip install scikit-image
Requirement already satisfied: scikit-image in /usr/local/lib/python3.10/dist-packages (0.19.3) Requirement already satisfied: numpy>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (1.23.5) Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (1.11.4) Requirement already satisfied: networkx>=2.2 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (3.2.1) Requirement already satisfied: pillow!=7.1.0,!=7.1.1,!=8.3.0,>=6.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (9.4.0) Requirement already satisfied: imageio>=2.4.1 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (2.31.6) Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (2024.1.30) Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (1.5.0) Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from scikit-image) (23.2)
!wget https://upload.wikimedia.org/wikipedia/commons/6/60/Wget_1.13.4.png
--2024-02-04 19:26:58-- https://upload.wikimedia.org/wikipedia/commons/6/60/Wget_1.13.4.png Resolving upload.wikimedia.org (upload.wikimedia.org)... 208.80.154.240, 2620:0:861:ed1a::2:b Connecting to upload.wikimedia.org (upload.wikimedia.org)|208.80.154.240|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 96313 (94K) [image/png] Saving to: ‘Wget_1.13.4.png.1’ Wget_1.13.4.png.1 100%[===================>] 94.06K --.-KB/s in 0.03s 2024-02-04 19:26:58 (3.34 MB/s) - ‘Wget_1.13.4.png.1’ saved [96313/96313]
import matplotlib.pyplot as plt
img = imread('Wget_1.13.4.png')
img.shape
(372, 481, 4)
plt.imshow(img)
<matplotlib.image.AxesImage at 0x7da042acb340>